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Boundary value problems for a system of equations serving as a mathematical model of 

the turbulent motion of a liquid or gas are investigated. The model in question was 
introduced by Burgers in r2]. Section 1 contains a proof of the existence of at least one 

smooth time-periodic solution of the first boundary value problem for this system. This 
is accomplished with the aid of the Leray-Schauder topological principle c;? J concerning 
the existence of fixed points of completely continuous operators. The existence theorem 

is prefaced by a derivation of the prior estimates of the solution of the problem which 

are necessary for the realization of the topological principle. Section 2 deals with the 
first boundary value problem with initial conditions and with the Cauchy problems for 
the turbulence model equations. 

Let us begin by introducing some symbols. We denote the interval (0,l) by B . Let 

tr, t, E (-- _‘, =) and let tZ > tr. The symbol Qt,, tp = 62 x (&, t,] denotes the rectan- 
gle. If t, - --00 and t, = + X, then the rectangle Qt,, tp becomes a strip which we 

denote by Q. Every rectangle for which $2 - tt = rO, where r0 is a fixed number, will 

be denoted by Q,. From now on we shall assume that t, = 0 and tz = 2’. The closures 

of Qt,, f,7 @ and Q,, will be denoted by Qt,, tp, a and 07,. 
The scalar product iu the space L, of functions in Q, and the norm are given by 

the expressions S,l %l 
@,I, cr>+ =* = 

~~ 
@‘1@‘:! fl% dt, 

05 

i/ @ ijQ td” = f C w dz dt 

>; 

The scalar product and the norm in L, for every t E [O, z,,] will be denoted in simi- 
lar fashion, 

(atl, CD& =3 c (D1OZ dx, 
. 

,,@,,+& 
0 1) 

The Walder norms for the function sit (x, t) defined in Qt,, tl are defined as follows : 
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a E (0, 1) (Pl, A E Qf,, f) (cont-) 
Here PI and Ps are points from Qi,* tt with the coordinates (z’, t’) and (z”t’.6 respect- 

ively.The function Q, (2, t) defined in Qt,, tl belongs in rnis domain to the class CQ (q = 0, 
a, 1 -k a, 2 -I- a) if IU$ is finite. Finally, we shall use hl to denote the smallest eigenvalue 
of the boundary value problem 

dS_ hu= 0, u(O)= u(1)= 0 

We shall use the letters M and m accompanied by subscripts to denote constants which 
depend on the data of the problem and on the domain. In some cases these constants 

will be given. 

1, Pariodlc aolutionr of ths ffrct boundary value probhm, Let 
us consider the boundary value problem 

@‘t = Y @z* - z@D*+uJ +ua, (1.1) 
1 

g+vu=- 
s 
aFdx (f.2) 

0 

@(O, q = %(a Q(1, 0=4Jz(0 (1.3) 

in the domain Q . 

In (1.1) the number Y > 0, and the functions gI and tcfp occurring in (1.3) are sufficf- 
ently smooth and periodic in t with the period T. 

Let (@, u), where w (5, t) E Csta in3 (so that u (t) E C2+’ in (- DC, =)),be the 

solution of boundary value problem (1,1)-(X. 3) periodic in I: with the period 2’ . 
We can obtain several prior estimates for this solution, 

L e m m a 1.1. The function Q, occurring fn the solution of the problem under con- 
sideration satisffes the estimate 

II @ li$ d Mr (1.4) 

Proof. Let (@, u) be a periodic solution of problem (1. I)-(1.3). If cD* attains its 
maximum value on the boundary of Q, then 

I %” 1 d max (I 11.2 lo1 Ill2 ICI = ml (1.5) 

in Q ‘which gives us the estimate 
Ii@ Ijo,* \< &’ = m2 (1.8) 

On the other hand, if a2 has its maxfmum value at the point t;e,, to) inside Q , then 

the equation obtained by multiplying Eq, (1.1) by CP yields the inequality 

- ZJ (to) < f (1.7) 
at the point (x0, toI l 

But the only periodic solution of Eq, (1.2) is given by the equation 
t1 

u(t)= - 
ss 

e++@2(,, z)dx dz 

--cc0 

(1.8) 

Expressions (1.7). (1.8) imply the inequarity 
t* 1 

SC 
,+(t*-f) @Z fx, z) dx c&r < f 

. 
--so0 

Replacing the lower limit in the outer integral by t,-- T and ecy (k@ by e-vT, we 
obtain the estimate VT ll@llQT2Ge ==m~ V-9) 
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Expressions (1.6) and (1.9) imply estimate (1.4) with Mr =: max (mz, ma). 
Lemma 1.2. The function 11 occurring in the solution of problem (1. l)--(1.3) 

satisfies the inequality 
I u ill d Jf2 (1.10) 

in IO, 2’) and therefore satisfies it everywhere. 

Proof. Instead of Eq. (1.8) we make use of another equation which also defines the 
periodic solution of Eq, (1.2)‘ 

fl 
e-vl-VT 

T I 

11 (t) = - ~~ 1 - ,?T ;, ;: 
RYT (Et2 (2, .t.) dx dz - e-“” ~~ 

e”T(DZ(s, 2)dzdz (i.11) 

;;, 
Making use of this equation and estimate (1.4), we obtain the following estimate 

valid in [O, T] : e VT 

lUlO< 1 ._ee-vT 
=MMo 

L e m m a 1.3. For every t E (- 00, DO) we have the estimate 

II QD I/$ < M3 (1.22) 

Pro o f. Let us replace the function d, by the function Y by means of the equation 

Qt = Y -i- W (W z $1 + ($2 - $1) x, (1.13) 

The function Y is equal to zero at the straight lines I =1 0 and J= 1 and satisfies the 

equation 

Yt = Y Yy,, - 2YYr - 2wY, - Zw,Y - 200, + Y + W + UY +- UO’- 01 (I.141 
in Q . 

Let us multiply both sides of this equation by Y and integrate the resulting equation 

over Q , 

-g 1, Y i/pa = 2v (Y, YxJn -r, (Y”“, YX), - 4 (OY, Y,)* - 4 (YZ, OX)* - 4 ((I)OX’ Y)o + 

+ 2 I] Y jjpz + :! (w, yQ 4 2 (U’ WQ + 2 (w w, - 2 cJ+’ v* : 1.15) 

Integrating by parts the first three terms in the right side of the above equation and 

making use of self-evident estimates, we arrive at the inequality 

dz / & -;. fi 11 Y, Ijo* < m4z _t- mj (P = 2v, 2 (r)= II Y Ilo? (1.16) 

Since 
!I yx /IQ2 > a1 IJ y /IQ27 

we infer from (1.16) that 
dz/clt + pz < rn4J t_ r?Lj (P = 2Yhl) 

From (X.17) we find that t 

z(l)“~t<,((q+m* eb(z)dz+~ 
s 

p (P-q 
0 

(1.17) 

(l.lS) 

Setting t = 1’ in this inequality and making use of the periodicity in z, we obtain 
T 

m4 

c p - 1 c 
eBrz (z) dz 

0 

From (1. X8), (1.19) we have the inequality 

me-@ T i 
2 (‘I< F + c -1++@T ; ear 2 (z) d-c + m@-@ s efiT, (T) dz 

0 

(1.19) 

Making use of estimate (1.4). we infer from this that 
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Applying the relationship between 4, and Y and making use of the latter inequality, 

we obtain estimate (1.12). 
L e m m a 1.4. The following estimate for the function u (1) is valid in the interval 

(-- ‘0, 00) : 
1 du / a’f lo d Jf4 (1.21) 

The proof follows directly from the application of estimates (1.10) and (I. 12) to Eq. 

(1.13). 
L e m m a 1.5. For the function cft we have the estimate 

II Qx /IQ g =G Bf5 (1.22) 

Pro o f. Let us multiply both sides of Eq. (1.14) by the function Y introduced above 
by means of Eq. (1.13) and then integrate the resulting equation over the domain QT. 

WV YJQT = y (Y, YXX)QT - 2 (Yyz, YX)QT - 2 (OYV YX)QT - 2 (Y”, WJQT - 

- 2 (@Q Y)QT + II y llQTZ + (0, w’a)q, + (uw VQT -(‘y, cqQT (1.23) 

Integrating by parts the first two terms in the right side of the latter equation and 

availing ourselves of the smoothness of the function o and the Cauchy inequality in 
estimating the remaining terms, we arrive at the estimate 

II Yx iI@/ < me tl Y /1QTZ + m-i (1.24) 

Applying the relations~p between the fictions 0 and Y to (1.24) and making use 

of estimate (l-4), we obtain (1.92). 

Le m ma 1.6. The function 0 satisfies the estimate 
T 

c II @ ll*4 dr d Ms (1.25) 
b 

The proof of this estimate follows directly from estimate (1.12) and the smoothness 
property of CD. 

L e m m a 1.7, The function CB satisfies the estimate 

11 @% II ZfM7 

Proof. 
QT (1.26) 

T T 

/I y2 /iQT’ < t (ma y2 // y \\n’) & < + 
c 

T 

0 x 
\ 

(max Yz)” dt + f 
s 

il y lln4 dt (1.27) 

b x 0 

Here we have made use of the Cauchy inequality. But 
z 

Making use of the Buniakowski inequality, we find that 

y d 2 II Y IIQ II TX Iln 

Applying (1.29)-(1.27), we obtain the inequality 
T T 

II y ilQT2 G 1 II y llSla II yz llQZ c-a + + 5 II y llQ4 a 
0 0 

This inequality in turn implies the inequality 

(1.29) 

(1.30) 
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T 

Recalling the relationship between the functions @ and Y and making use of estimates 
(1.U). (1.22) and (1.25), we arrive at estimate (1.26). 

L e m m a 1.8. The function CD satisfies the estimate 

Wl&dM3 f?.32f 

Proof. Multiplying Eq. (1.14) by Y3 and integrating the resulting equation over St , 

we obtain 

i 2 i[ Yz /jQ” = v (yP3, Yss~Q - 2 (Y’*, ‘r,J, - 2 foY3, YxfQ - 2 (Yal -- “xfQ - 

- 2 f&3@,, Y3)a + ji Y’ ]ifl’ + fo, Y3fp +- fuY, FJQ i_ fm2 YyQ - fw,, Y3Q (l.33 

Let us consider the first and third terms in the right side of Eq. (1. X3), 

Y (YS, YFrr)* = - 3Y (F, \Yx2)Q = - y421 [I (Y’), l/Q2 

Since //(Y), iin2 > AI I/ Y”? jlRZ, it follows that 

Hence, 

~tirna~~~g the remanning terms in the right side of (1.33) and setting 

If’ (t) := /j YQ 1’; 
we obtain the inequality 

dri-ldf -! &II .$ mg II‘ -j- rnro #I> oi 

From (I. 36) we find that t 

w(t) eP1’ < w(O) + me 
c 

s& u> (z) dz f -$$- (@ - 1) 

6 

(1.36) 

(1.37) 

Setting t := T in (1.37) and taking into account the periodicity of z: (t), we obtain 

the following estimate forw (0) : T 
lizI0 

-2,t 

v.J (0) < -fg-- + 
n?$ 

c &T -2 * 
f?1+ 70 (II) d-6 

D 

(1.38) 

Replacing the FI? (01 in (I. 37) by the right side of (1.38), we obtain the inequality 

[&?U< (~1 & + ,nge+ $ $1’ ZL‘ (7) & (1.39) 

0 n 

Making use of Eq, (X.13) relating the function @ and Y and applying estfmate (I. 26), 
we obtain the required estimate (1.32) from (X.39). 

Le m m a 1.9. The function d, satisfies the estimate 
I @l*<JfMs (1.40) 

in the domain ir, . 
Proof. Let 11 (t) be a function with the following properties: ?I (t) is defined for 

t >, 0, has a continuous first-order derivative. q (0) = 0 ) and 11 (t) =L: 1 for t > 8, where 

E > 0 is sufficiently small- 
The function Y1 = $P (see the definition of Y above) is the solution of the following 

boundary value problem in the domain Q*,~_,~: 



Boundary value problems for turbulence model equal 859 

ay1 G2Yl Wl 
-=v= fb(G t) ax at -+e(z,qYl+f(~, t) (1.41) 

In Eq. (1.41) 
Y1 (0, t) = Yr (1, 8) = 0, Yr (.2, 0) = 0 (1.42) 

b (x, t) = - 2 Y - 20, c (z, t) = - 20, + 1 + u 
f (5, t) = q (- zoo, + 0 + UC0 - q ) + Tp (1.43) 

The functions b, c and f satisfy the estimates 

U b2 Ilo’ Q n:n, I1 c ilo~ d *12* II f lla2 B mrs (1.44) 

which follow directly from estimates (1. lo), (1.12) and (1.34). By virtue of Theorem 3, 

Sect. 3 of [3], the solution of problem (l-41)-(1.43) satisfies the estimate 1 IX I,, < ma 
in &T+E, This estimate is also valid in the domain C&T_, where ?I = 1. Hence, by 

virtue of the periodicity of Y in q., we have the estimate 1 Y lo\< ~4. This fact and 
(1.13) imply estimate (1.40). 

L e m ma 1.10. The function CD satisfies the following estimate in the domain Gr_ : 

I Q Ia d Ml0 (2.45) 

P t o o f. Estimates (1.44) together with Theorem 5, Sect. 2 of [3] imply the estimate 
I YI la < ml5 (where yyl is the function defined above) in GO,Ttc , Since the function 

qrI = Y for t > E , it follows by virtueof the periodicity of Y that jW/, < ml5 in 7jT. 
This estimate together with (I. 13) yields (1.45). 

Le m ma 1.11. In the domain QT the function @ satisfies the estimate 

t cf, 1&a G Ml1 (i .46) 

Pr 00 f. Taking into consideration the estimates (1.21) and (1.45). and applying 
Theorem 4, Sect. 2 of [43 to the function cp (as the periodic in t solution of the botmd- 

ary value problem (1.1). (1.3) ), we obtain the estimate (1.46). 

We can now formulate and prove the principal theorem of the present section. 
Theorem 1.1. Ifthefunctions $r.~~EC*‘~in (--oc,oc)andiftheyareperiodic 

in t with the period T, then problem (l.l)-(1.3) has at least one solution (CD, u) peri- 
odic in f with the period T ; here 4, E Czia in g and 11 e csia in (-x), x). 

Proof. We shall prove this theorem with the aid of the Leray-Schauder topological 
theorem fz] on the existence of fixed points of operator equations, 

We denote the space of all functions 4i E clTa in .$ periodic in t with the period T 
by Cl-a having denoted the norm by the equation I/@ I/= I 0 II,,. We define the operator 
A (Q, k) in the space G”” for every kE IO, l) as the operator which associates each 
function @ E Clin with a function q? E C2’” which is the solution periodic in t with 
the period T , of the following boundary value problem: 

t 1 
ag, a”p 

( 
au) 

at=vz+k --2(D,,+a)---a, 
SC 

t?+-?) w (r, z) dz dz 
) 

(1.47) 
-K; 

cp (6, t) = 41 (07 rp (19 e = $2 (t) (1.48) 

By virtue of [4] the function CF exists and belongs to ~a+~ in 6 Let us prove the uni- 
form continuity in k of the operator A (dl, k)on every bounded set in the space Cl+* 

Let Qtl, cp,, E Cl>= and ]I at1 11, 11 Q, LL II < \ mle, where ml6 is some number. If (~1 and (r? are 
the corresponding periodic solutions of boundary value problem (X.4?), (1.48). then the 

function 19 = ‘PI - 92 is the periodic solution of the boundary value problem 
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-(ah -(T)t) s f e--“CL --I 012 (s. z)ds th - cDJ i f e-Q-r) (0’12 (x, 7) - alp (.c, T)) dz n/-1 
--co 0 -- ‘i, 0 

II; (0, t) =: LJ; (1, t) = 0 (1 .:iCl) 

By virtue of [4], the solution &’ satisfies the following estimate in 3 : 

Here m17 depends on rile. Estimate (1.51) implies the uniform ~ontinui~ in k of the 

operator A (41, k) on every bounded set in &a. 
Let us prove the complete continuity of the operator A ((I), k). Let cc&) be the sequence 

of functions from Clia and \]$ji < ~ZIS, where ml8 is some number. 
We can isolate from this sequence a subsequence {ari) which converges uniformly 

together with {a@,@~) in 0, 

Let (pri+* and qri be the solutions of problem (1.49). (1.50) which correspond to the 
elements tiril, and .a,{. The function 

Iiri+ I, Pi = ‘p,i ; [ - 9ri 

is clearly a periodic solution of the boundary value problem 

“Ti+fv ‘i P, 4 = Vri+[, r‘i (29 t) = 0 (1.53) 

On the basis of [4] we obtain the following estimate in 6 : 

aa, a%; 
II f$isl, pi II G mm c I @& 1 - @,$ I.) + 

‘i I 
___ - ___ a:c 1) i&T 0 

This inequality implies the complete contin~ty of A (43, k). The operator A ((t, 0) 

maps the entire space Cl+* into a single element ~1 E C2. a . This element is the solu- 
tion in Q of the boundary value problem 

dq, P(p 
(31=v&z-, cp (0, 1) = $1(t), rp (1, u = *J(t) 

periodic in t with the period T . 
The transformation CD - A (a~. 0) is therefore invertible. 
If (I, is a fixed point of the operator A (Crl, k),then Cn E C2’a in 6 The function 

u (t) = - i i e-+*) UP (z, z) dz dz 

--cIc 4, 

is periodic in 1 with the period T and u E CZia in (- m, = ). Thus, the pair of func- 
tions f@, U) is the solution of the boundary value problem 
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@t = ~@‘rr i- k(- 2tDcD, -f- Cp + MD) 
1 

(1.54) 

vu = - 
s 

W (2, t) dx, @ (0, a = $1 (t), 0 (1, t) = 92 ( t) (1.55) 

periodic in t with the peiiod T . 
It is clear that every function Q, E C2’ CL in 6 periodic in t with period T which 

occurs in the solution of problem (1.54),(1.55) is also a fixed point of the operator 

A (@, k). By virtue of Lemma 1.11 and the inequality 110 I[ < [I 0 //asoL , the norms of 
the possible fixed points of the operator A (0, k) are bounded in aggregate by some 

number which does not depend on k. All of the conditions of the teray-Schauder theorem 
are fulfilled, so that the operator A (@, k) has at least one fixed point for every k E 

10, l&and specifically for k=l. But then the aboye relationship between the fixed points 

of the operator A (a?, k) and the solutions of problem (1.54),(1.55) implies the exis- 
tence of at least one solution (D, U) of problem (l..l)-(1.3) periodic in t with the period 
T such that cp E I:’ A in (? and the function u has a continuous first derivative in 

(- =, =). Since CD E Cala in F, it is easy to show that u E CzTa in (- 00, m ). Theo- 
rem 1.1 has been proved. 

2. The ffrrt boundary value problem wfth fnftfrl oondftfonc 
rnd the Cauchy problsm. Let T+ be an arbitrary positive number. Let us con- 

sider in Q. r* the boundary value problem 
1 

0 (0, t) = $1 (11, @ fl. 4 = $2 (f)r 11 (0) = ilo, 4, (x, 0) = x (x) 

The ore m 2.1. If the functions ql, + E Cl’ a in [0, T* 1 and if the function x E 

E C2‘Q in 9, then problem (2.1) has a unique solution (CD, u), where 4, E C2*’ in ~&JQ 
and u E CzicL in the segment [0, T*l. 

Theorem 2.2. If I#~ = q2 = 0 and x E Lz in Q, then problem (2.1) has a unique 

generalized solution (@, u). 
We conclude this section with a consideration of the Cauchy problem 

urt,=v@ XX -2@QX+@+4uct, (2.2) 
+:> 

g + vu = - s cDa (2, t) dx, IL (f,, = Ito, tit (2, C) = x (X) 

Theorem 2.3. If xTC~+~ n & in (- a, 00)~ then problem (2.2) has a unique 
bounded solution (@, u). where CD E C2+a in the strip R = (-oc, or )x10, if] and II E 

E CaTa in LO, HI. 
Theorem 2.4. Let )! E LP in (-XI, CO). Cauchy problem (2.2) then has a unique 

generalized solution (@,, u). 
The proofs of Theorems 2.1- 2.4 differ only slightly from those of the corresponding 

theorems of 13, 7, 8, 111, which in turn are based on certain results of [5. 6, 9, 1OJ. 
The stability of the solutions of the above turbulence model is investigated in [12& 

BIBLIOGRAPHY 

I. Burgers, J. M., A mathematical model illustrating the theory of turbulence. 
Adv. Appl. Me&. Vol. 1, New York, Academic Press, 1948. 



86s I. I. Shmulev 

2. Leray, J. and Schauder, J., Topology and functional equations. (Russian 
translation). Uspekhi Mat. Nauk Vol. 1, NnI+3-4, 1946. 

3. Ladyzhenskaia, 0. A. and Ural’tseva, N, N, , A boundary value prob- 

lem for linear and quasilinear parabolic equations, I, Izv, Akad. Nauk SSSR, 
Ser. Mat. Vol.26, Nnl, 1962. 

4. Shmulev, I. I., Periodic solutions of the first boundary value problem for para- 

bolic equations. Mat.Sb., Vot66. No3. 1965. 

5. Friedman, A., Interior estimates for parabolic systems of partial differential 
equations. I. Math. Meah. Vol.?, Np7, 1958. 

6. Bernshtein, S. N., Restriction of the moduli of successive derivative solutions 
of equations of the parabolic type. Collected Works, Vol. 3, Izd. Akad. Nauk 
SSSR, 1960. 

‘7. Oleinik, 0. A. and Ventsel, T. D., The Cauchy problem and the first 
boundary value problem for a parabolic quasilinear equation. Mat. Sb., Vol. 
41, Npl, 1957. 

8. Oleinik, 0. A. and Kruzhkov, S. N., Second-order quasilinear parabolic 
equations with several independent variables. Uspekhi Mat. Nat&, Vol. 16, Ng5, 
1961. 

9. Friedman, A., On quasilinear parabolic equations of the second order, II. 

J. Math. Mech., Vol. 9, Nn4, 1960. 
10. Friedman, A., Boundary estimates for second-order parabolic equations and 

their application. J. Math. Mech , Vol. 7. %5, 1958. 

11. Ladyzhenskaia, 0. A., Mathematical Problems of the Dynamics of a Viscous 

Incompressible Fluid. Moscow, Fizmatgiz, 1961. 

la. Eckhaus, W., Problemes nonlineaires darn la theorie de stabilitd. J. Mechanique 
VOI,. 1, Npl, 1962 

Translated by A.Y. 

mLATlON BETWEEN THE LAURANQIAN AND EXJLERUN 
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E, A. NOVlKOV 
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(Received October 31, 1968) 

Let us consider a volume k’ filled with incompressible fluid. The volume can be either 
bounded or unbounded. Specifically, the fluid can fill the entire space. The boundaries 

can vary with time, but this variation must not depend on the motion of the fluid itself. 
This excludes the stream with a free surface and also the case of a vessel with elastic 

walls. 
The position at the instant t of a fluid particle which initially occupied the position 

a will be denoted by g (t, a). The condition of incompressibility is 

uj__ 
Ua -I (1) 

Theleft side of this equation is a transformation Jacobian. The state of the fluid is 
characterized by the quantitfes ufk) (t, a), (X- = 1,2,. . . 1, each of which can denote a set 


