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BOUNDARY VALUE PROBLEMS FOR

TURBULENCE MODEL EQUATIONS

PMM Vol. 33, W5, 1969, pp, 879-886

I, I, SHMULEV
(Voronezh)
(Received December 31, 1968)

Boundary value problems for a system of equations serving as a mathematical model of
the turbulent motion of a liquid or gas are investigated, The model in question was
introduced by Burgers in {2}, Section 1 contains a proof of the existence of at least one
smooth time~-periodic solution of the first boundary value problem for this system, This
is accomplished with the aid of the Leray-Schauder topological principle [2] concerning
the existence of fixed points of completely continuous operators, The existence theorem
is prefaced by a derivation of the prior estimates of the solution of the problem which
are necessary for the realization of the topological principle. Section 2 deals with the
first boundary value problem with initial conditions and with the Cauchy problems for
the turbulence model equations,
Let us begin by introducing some symbols, We denote the interval (0, 1) by Q. Let
by, by € (— oo, o) and let & > ¢. The symbol Q4 1, = Q X {4, t,] denotes the rectan-
gle, If 1= —oo and #, = + o, then the rectangle @, ,, becomes a strip which we
denote by 0. Every rectangle for which ¢ — t; == 1, where 1, is a fixed number, will
be denoted by Q. From now on we shall assume that ¢, == 0 and ¢, = T. The closures
of @, 4, ¢ and @, will be denoted by @, ,, ¢ and 51,-
The scalar product in the space L, of functions in ., and the norm are given by
the expressions 1
g2
(D4, @2)QTB=§§¢';®2 d dt, EQHQ»«, :%

Tg

e

D dx di

T Oy

The scalar product and the norm in L, for every ¢ & {0, v, will be denoted in simi-

lar fashion, L )
(@1, @2) = DD, dz, (g2 = S 2 de
¢ ¢

The Hdlder norms for the function @ (z, ¢) defined in Q, ,, are defined as follows:
[ D (Py) - D (Py) |

(4 (P1, Po))*
|®|L+a:[®lq+'®x|a» I(Dlz+a=l®|1+a+|®tia+t®xxla

[®@o=sup | @], | D, =] Do+ sup
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d(Py, P)= V@& —=z)+|0 —1], acs(0,1) (Pu, P @h t) (cont.)

Here Py and P, are points from @y, ;, with the coordinates (z’, ¢') and (z",'t"), respect-
ively, The function @ (z, 1) defined in ch ¢, belongs in this domain to the ciass¢? (¢ =0,
a, 1+ a, 2+ o) if [@lg is finite, Finally, we shall use A, to denote the smallest eigenvalue

of the boundary value problem &+ A= 0, p(O)= v (1)=0

We shall use the letters M and m accompanied by subscripts to denote constants which
depend on the data of the problem and on the domain, In some cases these constants
will be given,

1, Periodic solutions of the first boundary value problem, Let
us consider the boundary value problem

O = v Opy — 200; + © + ud (1.1)
1

—ddl:--}-‘vu:-——gd)zdx (1.2)
°

(D(O' t)=‘ll)1 (l), O(i, t): \pg(t) (1.3)

in the domain Q.

In (1. 1) the number v>>0, and the functions ¥, and ¥, occurring in (1, 3) are suffici-
ently smooth and periodic in ¢ with the period T.

Let (@, u), where w (z, £) & C¥* in @ (so that u (1) & C¥** in (— oc, o< )),be the
solution of boundary value problem (1, 1)—(1, 3) periodic in ¢ with the period 7',

We can obtain several prior estimates for this solution,

Lemma 1,1, The function & occurring in the solution of the problem under con-
sideration satisfies the estimate @ “Qrz <M {1.4)

Proof, Let (®, u) be a periodic solution of problem (1, 1)~(1, 3), If ®2 attains its
maximum value on the boundary of Q, then

O8] Kmax (g, [Pl = m (1.5)

in @ ,which gives us the estimate
(D, < mT = m; (1.6)
On the other hand, if ®? has its maximum value at the point \z,, ;) inside @ ,then
the equation obtained by multiplying Eq. (1. 1) by @ yields the inequality
—u(ty <1 (1.7)
at the point (x4, f) .
But the only periodic solution of Eq, (1,2) is given by the equation
t 1
u(t)=— S Se-vﬂ*‘) @ (z, 1) dz dT (1.8)
— 0
Expressions (1, 7), (1. 8) imply the inequality
th 1
S g D) @ (2, v)drdr < A

o
-—20 0

Replacing the lower limit in the outer integral by ¢,—7 and %~ by T, we

obtain the estimat
ajn stimate HOHQTz <o = mq (1.9)
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Expressions (1, 8) and (1, 9) imply estimate (1, 4) with M; = max (m., mg).
Lemma 1,2, The function » occurring in the solution of problem (1, 1)~(1, 3)
satisfies the inequality [y < Mo (1.10)

in [0, 7] and therefore satisfies it everywhere,
Proof, Instead of Eq, (1. 8) we make use of another equation which also defines the
periodic solution of Eq, (1.2),

1T &4 &
-v —Y
u(ty=-— Tt g Qe“ Oz, 7) dx dv — eV Rg eV T Oz, Ty dedr (111}
1— 09 60
Making use of this equation and estimate (1, 4), we obtain the following estimate
valid in [0, 7] : T
Ll S 7= = Mo
Lemma 1,3, Forevery ¢t & {(— oo, o) we have the estimate
@ "Q < Ms (1.12}
Proof, Let usreplace the function @ by the function ¥ by means of the equation
O =Y 0 (0=y-+ Q—)2) {1.13)

The function ¥ is equal to zero at the straight lines 2 = 0 and z= 1 and satisfies the
equation
¥, o= v Way — 29y — 20%, — 20,¥ — 200, + ¥ 4 0 -+ u¥ -+ vo— o (1.14)
in Q .
Let us multiply both sides of this equation by ¥ and integrate the resulting equation
over Q,
-5; [¥ e =2v(¥, ¥, Jo —4(F% ¥ )g — 4 (0F, ¥ )g — 4 (¥?, 0,)g — 4 (00, V) +
42 ¥ g2 + 2 (@, F)g + 2(u, ¥g + 2 (e, ¥)g—2(0, ¥y 11.15)
Integrating by parts the first three terms in the right side of the above equation and
making use of self-evident estimates, we artive at the inequality
dz/dt 2 Bl Uxlig? < maz + ms B=2v, 2()=1| ¥ lig") (1.16)
Since YL ]
iyl =M | “g ’

we infer from (1, 16) that

dzjdt 4 Bz < mys +m; (B == 2vAy) (1.17)
From (1, 17) we find that ¢
#() esigz(ﬂ)+m4ge3‘z(r)dx +-'gi(e5f.~1) (1.18)

0
Setting t — 7" in this inequality and making use of the periodicity in z, we obtain

T
my

z(ﬂ)<_rgi+“;§“f'j

N Pz (1) dr (1.19)

SE Y

From (1, 18), (1, 19) we have the inequality
T

i
PN <t 4
;Zi—é-f geBT 2 (1) dT + mye™® Ses"z (t)dr
iy ;

Making use of estimate (1, 4), we infer from this that

my
z(f)<‘§—+
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ms  maMye®T
t — T
OSg+
Applying the relationship between @ and ¥ and making use of the latter inequality,
we obtain estimate (1, 12),

Lemma 1,4, The following estimate for the function u (¢) is valid in the interval

(= >0, 09) | du / dt |y < Ma (1.21)
The proof follows directly from the application of estimates (1, 10) and (1. 12) to Eq,
(1.12),
Lemma 1,5, For the function @ we have the estimate
19, g, < Ms (t.22)
Proof, Let us multiply both sides of Eq, (1, 14) by the function ¥ introduced above
by means of Eq, (1, 13) and then integrate the resulting equation over the domain Qr,
(¥, ¥)op =V (¥, ‘Fxx)QT — 2 (¥?, ¥ )op—2(o¥, ‘I’x)QT — 2 (¥, 0 )gp—
—2(00, ¥gp +1¥ lo,* +(0, ¥3)g, + (v, Vg — (¥, 0o, (1.23)
Integrating by parts the first two terms in the right side of the latter equation and
availing ourselves of the smoothness of the function  and the Cauchy inequality in
estimating the remaining terms, we arrive at the estimate
I, Ny S mell ¥ lg,* + ma (1.24)
Applying the relationship between the functions @ and ¥ to (1,24) and making use
of estimate (1, 4), we obtain (1,22),

Lemma 1,6, The function ¢ satisfies the estimate
T

(I@gear < me (1.25)
0
The proof of this estimate follows directly from estimate (1, 12) and the smoothness

property of ®@.
Lemma 1,7, The function @ satisfies the estimate

1o lg,* < M- {1.26)

(1.20)

Proof, T

o

T T
17, < max vy iy < - Smavwpa s 3 Gwigea
¢ [

Here we have made use of the Cauchy inequality, But
x

‘W:Sz\lﬂyxdxgzum, ¥, g (1.28)
0
Making use of the Buniakowski inequality, we find that
2| Wi g (1.29)

Applying (1,29)~—(1, 27), we obtain the inequality

T T
1
1¥%lgp" < SII Fl* ¥, llg* d2 + 5~ Sii F gt dt (1.30)
¢ 0
This inequality in turn implies the inequality
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T
i
¥l S max| ¥ Ig* 1Y, o, + - Snwuﬂ“dz (L)

Recalling the relationship between the functions @ and ‘P and making use of estimates
(1.12),(1,22) and (1, 25), we arrive at estimate (1, 26),
Lemma 1,8, The function @ satisfies the estimate

ol < Mg (1.32

Proof, Multiplying Eq, (1.14) by ¥® and integrating the resulting equation over £,
we obtain

A PPl = v (P ¥ g — 2(¥4, W ) — 2 (0¥, W) — 2 (¥ ©,)g —
—2(00_, ¥y [ ¥ g + (0, ¥o)g + (¥, Ty + (ue, Tig — (0, g (1.33)
Let us consider the first and third terms in the right side of Eq, (1, 33),
VE, W g = — 3w (F2, ¥ g = — v [ (), g?
Since [(¥?), lp? > M [ ¥ g% it follows that
V(¥ Y, o <= Yevha [ 12 g (1.34)

—2(@¥?, ¥ ) = — e (o, (T, Jg =2 (0, T)g

Further,

Hence, ) .
2H@¥®, ¥ag [ ms | W2 [ (1.35)
Estimating the remaining terms in the right side of (1, 33) and setting
w (1) = ¥y
we obtain the inequality

dwldt 4. Bup < mg w - myg 1 >0 {1.36)
From (1, 36) we find that t
w(t) et < (0) 4 my Seﬁt* w(t)dt + —’g?—« (Pt —1) (1.37)
Setting ¢ = 7T in (1, 37) and taking :;mo account the periodicity of w (1), we obtain
the followmg estimate forw (0): ot 3
w(0) < B -+ 'Z}P 1 Reﬁ“ w (v}t (1.38)
&

Replacing the w (0) in (1. 37) by the right side of (1, 38), we obtain the inequality
i

Mg YRQQWBJ
v <5+ AT

T
¢ %t — 8yt Byt .,
\e®Fur (v) de 4 mge™? %e o (1) d (1.39)
] o

Making use of Eq, (1, 13) relating the function @ and ¥ and applying estimate (1. 26),
we obtain the required estimate (1, 32) from (1, 39).

Lemma 1,9. The function ¢ satisfies the estimate

[ @ <M (1.40)

in the domain Q.

Proof, Let 7 (s be a function with the following properties: v () is defined for
t 2> 0, has a continuous first~order derivative. v (0) = 0 ,and 3 {#) == { for ¢t > &, where
€ > 0 is sufficiently small,

The function ¥; = 1V (see the definition of ¥ above) is the solution of the following
boundary value problem in the domain ¢,
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ibg oY v
S = v b ) 5+ ele, ) ¥at (= D) (140
— - = 1.42
In Eq (1. 41) ¥ 0, )=V, t) =0, Yz, 0) =0 (1.42)
bz, ) = —2¥ —20,c(z,t) = — 20, +14+u
f t)=1n(— 200 + ® 4+ ue — o) + ¥ (1.43)
The functions b, ¢ and ; satisfy the estimates
182 <, lelg® <may | /1g? Smus (1.44)

which follow directly from estimates (1, 10),(1, 12) and (1, 32). By virtue of Theorem 3,
Sect, 3 of [3], the solution of problem (1, 41)~(1, 43) satisfies the estimate | ¥1l, <€ mu
in ‘éo.Tﬂ . This estimate is also valid in the domain @,Tﬂ, where 1 == 1. Hence, by
virtue of the perfodicity of ¥ in Q@ , we have the estimate | ¥ |, my. This fact and
(1. 13) imply estimate (1, 40),

Lemma 1,10, The function & satisfies the following estimate in the domain (7T :

[, < My (1.45)

Proof, Estimates(1,44) together with Theorem 5, Sect, 2 of [3] imply the estimate
| ¥1], < mi; (where W, is the function defined above) in @-O,Tﬂ . Since the function
Y, = ¥ for t > e, it follows by virtueof the periodicity of ¥ that |¥| < mi in Qr-
This estimate together with (1, 13) yields (1, 45).
Lemma 1,11, In the domain @ the function @ satisfies the estimate

@ |y < Mu (1.46)

Proof, Taking into consideration the estimates (1,21) and (1, 45), and applying
Theorem 4, Sect, 2 of [4] to the function @ (as the periodic in ¢ solution of the bound-
ary value problem (1. 1), (1, 3)), we obtain the estimate (1. 48),

We can now formulate and prove the principal theorem of the present section,

Theorem 1,1, If the functions 41, $» € €% in (—oc, o) and if they are periodic
in ¢ with the period T, then problem (1, 1)—(1, 3) has at least one solution (®, u) peri-
odic in ¢ with the period 7'; here ® < ¢*'® in ¢ and u & €2'* in (—>0, ).

Proof, We shall prove this theorem with the aid of the Leray-Schauder topological
theorem [2] on the existence of fixed points of operator equations,

We denote the space of all functions @ & ¢1°® in Q periodic in ¢ with the period 7
by C*** having denoted the norm by the equation | @ = | ®|, ,- We define the operator
A (®, k) in the space ¢V ® for every ke [0, 1] as the operator which associates each
function ® & C** with a function ¢ & €**% which is the solution periodic in ¢ with

the period 7, of the following boundary value problem:
t 1

: e 0
90, 1) = 1 (1), @, 1) =2 (1) (1.48)

By virtue of [4] the function @ exists and belongs to ¢2*® in Q. Let us prove the uni-
form continuity in %4 of the operator 4 (®, k)on every bounded set in the space ¢4*¢
Let @, @, & C1"% and || @1, || Da || << mue, where mis is some number, If ¢ and ¢. are
the corresponding periodic solutions of boundary value problem (1, 47), (1, 48), then the
function v* = @1 — ¢ is the perfodic solution of the boundary value problem
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3" %t My, A, D,
o TV e +k{~—@1( G T o )“2((D1—(Dz)“%*+(D1v(Dg — (140
{ 1 t o1 .
— (@ =) \ (e D () 1y i — @, \ { et @ (2, 1) — 022 (e, 1)) dc v
~%o 0 o i
0, 1) =8 (1, 1) = (1.504

By virtue of [4], the solution ¥ satisfies the followmg estimate in ¢ :
oDy a0,

i o f=Q1— P2 << man (\‘ O, — O, {O+IM— Iz 0)<m17H(D1-(D2 i (L.51)

Here mi; depends on mis. Estimate (1, 51) implies the uniform continuity in & of the
operator 4 (@, k)on every bounded set in ¢V %,

Let us prove the complete continuity of the operator 4 (D, k). Let {®,} be the sequence
of functions from ¢V'* and |} ©, || < mis, where ms is some number,

We can isolate from this sequence a subsequence {®,;} which converges uniformly
together with {9®, /dz} in @,

Let ¢, and ,; be the solutions of problem (1,49),(1, 50) which correspond to the
elements (D Fisl and @,y The function

Ve i ™ e Py

it i

is clearly a periodic solution of the boundary value problem

av i aQ@ D D,
rich i Ty BT ) rig T3 ry
= 4k [—ZCD” ( 1< e e > —2 (@rh? — (Dri) . -

at dx? dx ax
t o1
-~ - . ~u(l-7) 2 ’ -
+O, D, (@, —®,) S Se .2 (2, V) dwdr
- 0
it 1
—, K Q (@, 2 (e, 1) — D, 2 (3, V) du dr] (1.52)
v‘oo U
i — == 1.53
ropr OO =V, (4 1) =0 (1.94)
On the basis of [4] we obtain the following estimate in ¢ :
( o, 0o >
I Vri+;, 3 < mw )l (Dri” - ori lh+ Az dx g

This inequality implies the complete continuity of A (®, k). The operator 4 (0, 0)
maps the entire space C1** into a single element ¢ & C*“, This element is the solu~
tion in @ of the boundary value problem

aQ 8¢
=V, O =) o )=14:()
periodic in ¢ with the period 7 ,
The transformation @ — A4 (@, 0) is therefore invertible,
If ® is a fixed point of the operator A (@, k),then ® € C** in Q. The function

t1
w@y=— { {0z v)dzar
—0u 8
is periodic in ¢ with the period 7 and u & C** in (— oo, o). Thus, the pair of func-
tions (@, u) is the solution of the boundary value problem
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Dy = vOpy + k{(— 20D, -+ @ 4 ud) (1.54)
1
du

A - vu =—S<D2(x, Hdz, @0, 1) = Yo, @1 1) =14(2 (1.55)
0
periodic in ¢ with the period T,

It is clear that every function ® € €** in Q periodic in ¢ with period T which
occurs in the solution of problem (1, 54),(1, 55) is also a fixed point of the operator
A (®, k). By virtue of Lemma 1,11 and the inequality || ® || < || @|),, » the norms of
the possible fixed points of the operator A (®, k) are bounded in aggregate by some
number which does not depend on %. All of the conditions of the Leray-Schauder theorem
are fulfilled, so that the operator 4 {®, k) has at least one fixed point for every & &
[0, 1],and specifically for k=1, But then the aboye relationship between the fixed points
of the operator A (®, k) and the solutions of problem (1, 54), (1, 55) implies the exis-
tence of at least one solution (@, u) of problem (1,1)—(1,3) periodic in ¢ with the period
T such that @ & ¢* * in ( and the function u has a continuous first derivative in
(—, o). Since ® & ¢** in @, it is easy to show that u & €*"® in (— co, o). Theo-
rem 1,1 has been proved,

2, The first boundary value problem with {nitial conditions
and the Cauchy problem, Let T* be an arbitrary positive number, Let us con-

sider in @, 7. the boundary value problem
1

du o,
O = v@yx — 200, - O L u®, Gy bV :——Sfb)(x, 1) ds e

H

i

@O0, 1) = Y1 (1), D (1, 1) = 2 (1), u(0) = uy, @z, 0) = % ()

Theorem 2,1, If the functions y, y. & C*** in [0, T*] and if the function ¥ €
€ ¢¥% in Q, then problem (2, 1) has a unique solution (®, u), where ® € C*'* in @y 7+,
and u &€ C** in the segment [0, T*].

Theorem 2,2, If Y1 = ¢ = 0 and % & Ly in Q, then problem (2, 1) has a unique
generalized solution (@, u).

We conclude this section with a consideration of the Cauchy problem

@, = v, — 200+ O - ud (2.2
du ’

+:
it -+ v = — S Q (x, t)dz, u (0) = uq, D (x, O)=y (v)

%

Theorem 2,3, If y& €¥* N 1, in (—ox, o0}, then problem (2, 2) has a unique
bounded solution (®, u), where ® & C***in the strip B = (—oc, o )xI10, /] and « &
ec®® in [0, H)

Theorem 2,4, Let y & L; in (—o20, o). Cauchy problem (2, 2) then has a unique
generalized solution (®, u).

The proofs of Theorems 2,1 — 2,4 differ only slightly from those of the corresponding
theorems of [3, 7, 8, 113, which in turn are based on certain results of [5, 6, 9, 10},

The stability of the solutions of the above turbulence model is investigated in [12],

BIBLIOGRAPHY

1. Burgers,J, M., A mathematical model illustrating the theory of twrbulence,
Adv, Appl, Mech, Vol, 1, New York, Academic Press, 1948,



862 1,1, Shmulev

2. Leray,J, and Schauder,},, Topology and functional equations, (Russian
translation), Uspekhi Mat, Nauk Vol, 1, N\Ne3-4, 1946,

3. Ladyzhenskaia, O, A, and Ural'tseva,N,N,, A boundary value prob-
lem for linear and quasilinear parabolic equations, I, Izv, Akad, Nauk SSSR,
Ser, Mat, Vol,26, N1, 1962,

4, Shmulev,1,1I,, Periodic solutions of the first boundary value problem for para-
bolic equations, Mat,Sb,, Vol, 68, N3, 1965,

5, Friedman, A,, Interior estimates for parabolic systems of partial differential
equations, J, Math, Mech, Vol,7, N7, 1958,

6, Bernshtein, S, N, , Restriction of the moduli of successive derivative solutions
of equations of the parabolic type, Collected Works, VoL, 3, Izd, Akad, Nauk
SSSR, 1960,

7. Oleinik, O, A, and Ventsel, T, D., The Cauchy problem and the first
boundary value problem for a parabolic quasilinear equation, Mat, Sb,, Vol,
41, N1, 1957,

8, Oleinik, O, A, and Kruzhkov,S,N,, Second-order quasilinear parabolic
equations with several independent variables, Uspekhi Mat, Nauk, Vol, 16, N¢5,
1961,

9, Friedman, A,, On quasilinear parabolic equations of the second order, II,
J. Math, Mech,, Vol, 9, N4, 1960,

10, Friedman, A,, Boundary estimates for second-order parabolic equations and
their application, J, Math, Mech,, Vol 7, N5, 1958,

11, Ladyzhenskaia, O, A,, Mathematical Problems of the Dynamics of a Viscous
Incompressible Fluid, Moscow, Fizmatgiz, 1961,

12, Eckhaus, W, , Problémes nonlinéaires dans la théorie de stabilité, J, Mechanique

VoL 1, N1, 1962 Translated by A, Y,
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Let us consider a volume V filled with incompressible fluid, The volume can be either
bounded or unbounded, Specifically, the fluid can fill the entire space, The boundaries
can vary with time, but this variation must not depend on the motion of the fluid itself,
This excludes the stream with a free surface and also the case of a vessel with elastic
walls,
The position at the instant ¢ of a fluid particle which initially occupied the position
a will be denoted by § (¢, a). The condition of incompressibility is
Dz
e =1 M
The: left side of this equation is a transformation Jacobian, The state of the fluid is
characterized by the quantities o'*) (, a), (k = 1,2,...), each of which can denote a set



